Remote Procedure Call as a Managed System Service

Jingrong Chen*, Yongji Wu*, Shihan Lin, Yechen Xu, Xinhao Kong, Thomas Anderson, Matthew Lentz, Xiaowei Yang, Danyang Zhuo *Equal contributions

Remote Procedure Calls Widely Used

Distributed Data Store

Network Filesystem

Data Analytics Framework

Remote Procedure Calls Widely Used

- [1] Aequitas: Admission Control for Performance-Critical RPCs in Datacenters, SIGCOMM '22
- [2] Profiling a Warehouse-Scale Computer, ISCA '15

Remote Procedure Calls Widely Used

Performance is always a key design goal of RPC

- [1] Aequitas: Admission Control for Performance-Critical RPCs in Datacenters, SIGCOMM '22
- [2] Profiling a Warehouse-Scale Computer, ISCA '15

1 Write protocol specification


```
Service KVStore
   Message GetReq
      bytes key
   Message Entry
      bytes? value
   Func Get(GetReq) -> Entry
```

1 Write protocol specification

```
Service KVStore
Message GetReq
bytes key
Message Entry
bytes? value
```

Func Get(GetReq) -> Entry

1 Write protocol specification

Service KVStore
 Message GetReq
 bytes key
 Message Entry
 bytes? value
 Func Get(GetReq) -> Entry

2 Protocol compiler generates stub code

3 App compiles with the stub and RPC library

1 Write protocol specification

Service KVStore
 Message GetReq
 bytes key
 Message Entry
 bytes? value
 Func Get(GetReq) -> Entry

2 Protocol compiler generates stub code

3 App compiles with the stub and RPC library

Andrew D. Birrel and Bruce Jay Nelson, Implementing Remote Procedure Calls, ACM Transactions on Computer Systems 2(1):39-59, February 1984

1 Write protocol specification

Service KVStore
 Message GetReq
 bytes key
 Message Entry
 bytes? value
 Func Get(GetReq) -> Entry

2 Protocol compiler generates stub code

3 App compiles with the stub and RPC library

Andrew D. Birrel and Bruce Jay Nelson, Implementing Remote Procedure Calls, ACM Transactions on Computer Systems 2(1):39-59, February 1984

gRPC, Thrift, eRPC Cap'n Proto, rpclib, XML-RPC brpc, tarpc, tonic...

Observability

e.g., How many RPCs? RPC Latency?

Observability

e.g., How many RPCs? RPC Latency?

Policy Enforcement

e.g., Prioritize certain RPCs?

Observability

e.g., How many RPCs? RPC Latency?

Policy Enforcement

e.g., Prioritize certain RPCs?

Upgradability

Observability

e.g., How many RPCs? RPC Latency?

Policy Enforcement

e.g., Prioritize certain RPCs?

Upgradability

Observability

e.g., How many RPCs? RPC Latency?

Policy Enforcement

e.g., Prioritize certain RPCs?

Upgradability

Observability

e.g., How many RPCs? RPC Latency? ----- → YES

Policy Enforcement

e.g., Prioritize certain RPCs?

Upgradability

Observability

e.g., How many RPCs? RPC Latency? ------ YES

Policy Enforcement

Upgradability

e.g., Fix vulnerabilities while app running?

Mandatory policies?

Observability

e.g., How many RPCs? RPC Latency? ------ → YES

Policy Enforcement

e.g., Prioritize certain RPCs? ------- NO

Upgradability

e.g., Fix vulnerabilities while app running? ---- → Currently NO

Mandatory policies?

Upgradability?

- M Marshal
- U Unmarshal

- RPC library and sidecar are weakly coupled
 - prevent from cross-layer optimization
 - operate/coupled at L4

- RPC library and sidecar are weakly coupled
 - prevent from cross-layer optimization
 - operate/coupled at L4
- RPC Library and app are strongly coupled
 - Difficult to upgrade RPC library

- RPC library and sidecar are weakly coupled
 - prevent from cross-layer optimization
 - operate/coupled at L4
- RPC Library and app are strongly coupled
 - Difficult to upgrade RPC library

We want

- strong coupling: operate at L7
- weak coupling: most of the functionalities extracted into a separate service

mRPC Overview

- M Marshal
- U Unmarshal

mRPC Overview

M Marshal

U Unmarshal

mRPC Overview

Marshal

Unmarshal

Challenges

How to support new applications with new RPC specifications at runtime?

Dynamic Binding

How to enforce policies with efficiency and security?

Memory Management

How to live upgrade RPC implementations without disrupting other applications?

Live Upgrade

RPC-as-a-service: mRPC

Challenges

How to support new applications with new RPC specifications at runtime?

Dynamic Binding

How to enforce policies with efficiency and security?

Memory Management

How to live upgrade RPC implementations without disrupting other applications?

Live Upgrade

RPC-as-a-service: mRPC

Traditional RPC Libraries

Traditional RPC Libraries

In traditional RPC libraries, marshal/ unmarshal and service methods code will be generated as a stub and loaded into user applications as a library

In mRPC, marshal/unmarshal code are decoupled from user stub, and generated/loaded by mRPC service instead

Challenge #2: Memory Management

Service KVStore
Func Get(GetReq) -> Entry

```
Shared GetReq
```

Challenge #2: Memory Management

Service KVStore
Func Get(GetReq) -> Entry

```
Shared GetReq

Memory Heap
```

RPC messages are allocated on shared memory heap.

Accessed by both the application and the mRPC service.

Memory Management

Memory Management

A shared memory queue is used to pass RPC descriptors

Memory Management

Processing Flow / Time

NIC

Shared Heap

Processing Flow / Time App **mRPC mRPC** Stub ACL mRPC Frontend NIC Policy Library Desc Desc Shared key: "dog" key: "dog" Heap **♥** Copy **♥ Private** key: "dog" Heap

Due e e e e in e Elever / Time e

Evaluation

Does mRPC deliver smaller latency and higher goodput compared to existing solutions?

Does mRPC enforce policy efficiently?

Can mRPC improve real-world application's performance?

Evaluation: Large RPC Goodput

- TCP transport
- Keep 128 concurrent RPCs to hide latency

Evaluation: Small RPC Latency

	Median Latency	P99 Latency
	(µs)	(µs)
eRPC	3.6	4.1
mRPC	7.6	8.7
eRPC + Proxy	11.3	15.6
mRPC + NullPolicy	7.9	9.1

Speed-up by 1.7x

- RDMA transport
- 64-byte RPC requests, 8-byte replies

Evaluation: Policy Enforcement

- Filter RPCs based on string matching on one field
- 1% requests will not pass

Evaluation: DeathStarBench

- TCP transport
- Measured over 250 secs @ 20 reqs/sec

Summary

RPC-as-a-library cannot meet both manageability and efficiency

mRPC: Reimagined RPC as a managed system service

Efficient policy enforcement

Upgrade of RPC implementation without shutting down user applications

https://github.com/phoenix-dataplane/phoenix