
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5558  | https://doi.org/10.1038/s41598-022-09440-1

www.nature.com/scientificreports

Listening to bluetooth beacons 
for epidemic risk mitigation
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The ongoing COVID-19 pandemic let to efforts to develop and deploy digital contact tracing systems 
to expedite contact tracing and risk notification. Unfortunately, the success of these systems has been 
limited, partly owing to poor interoperability with manual contact tracing, low adoption rates, and 
a societally sensitive trade-off between utility and privacy. In this work, we introduce a new privacy-
preserving and inclusive system for epidemic risk assessment and notification that aims to address 
these limitations. Rather than capturing pairwise encounters between user devices as done by existing 
systems, our system captures encounters between user devices and beacons placed in strategic 
locations where infection clusters may originate. Epidemiological simulations using an agent-based 
model demonstrate that, by utilizing location and environmental information and interoperating with 
manual contact tracing, our system can increase the accuracy of contact tracing actions and may help 
reduce epidemic spread already at low adoption.

Containing infectious diseases such as the ongoing COVID-19 pandemic requires effective testing, contact 
tracing, and isolation of infected individuals (TTI)1–8. Among these, contact tracing is an important tool that 
can help direct limited test resources to those most likely to be infected, by identifying infected individuals and 
their close contacts during the infectious period, and thus avoid further infections. Furthermore, contact tracing 
can provide insight into the circumstances of contagion, which in turn informs the implementation of public 
health policies and interventions to help contain disease spread. For instance, outbreaks of COVID-19 in meat 
packing plants in Germany9 provided insights into conditions that can potentially breed infection hotspots, 
leading to regulatory action10.

To expedite contact tracing, a number of digital contact tracing systems have been proposed11–17. In most 
of these systems, individuals install a smartphone application that records instances of physical proximity with 
devices belonging to other individuals via close-range Bluetooth exchanges, referred to as encounters. Once 
an individual has tested positive, their recent encounter history is used to notify other at-risk individuals who 
encountered the infectious person during their period of contagiousness.

Smartphone-based, Pairwise Encounter-based Contact Tracing Systems (or SPECTS) have seen real-world 
deployment in many different countries and have an implementation backed by major mobile OS vendors Apple 
and Google18 (see Section 4 of the Supplementary Information for an in-depth overview of different SPECTS, 
including their adoption levels across countries). While there have been significant deployments, a number of 
questions have been raised regarding their effectiveness in practice19–22. One of the reasons is due to low adoption 
rates ( < 25 %) when not mandated23, which present an issue due to the pairwise nature of the encounters. Another 
reason is that, while SPECTS complement traditional, manual contact tracing efforts19 that many countries have 
continued in conjunction with a SPECTS deployment, they do not enhance them due to the limited nature of 
the encounter information collected (e.g., no location data). Moreover, not everyone has access to a smartphone 
device to participate in a SPECTS deployment; this especially hurts populations that are more vulnerable (e.g., 
elderly, homeless). Overall, while SPECTS have proven to help in response to the COVID-19 pandemic, it is still 
worth considering other points in the design space for contact tracing systems.

In this paper, we describe PanCast, a privacy-preserving, secure and inclusive system for epidemic risk assess-
ment and notification. In contrast to SPECTS, which focus on the point in the design space of person-to-person 
encounters, PanCast leverages the power of person-to-infrastructure encounters to enable incremental deploy-
ment of our system and overcome adoption challenges. In PanCast, bluetooth beacons are placed in strategic 

OPEN

1Max Planck Institute for Security and Privacy, Universitätsstraße 140, 44799  Bochum, Germany. 2Max Planck 
Institute for Software Systems, Paul‑Ehrlich‑Straße 26, 67663  Kaiserslautern, Germany. 3Max Planck Institute 
for Intelligent Systems, Max‑Planck‑Ring 4, 72076  Tübingen, Germany. 4Duke University, Durham, NC  27708, 
USA. 5ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland. 6University of British Columbia, Vancouver, BC V6T 
1Z4, Canada. *email: manuelgr@mpi-sws.org; bs@tuebingen.mpg.de

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-09440-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5558  | https://doi.org/10.1038/s41598-022-09440-1

www.nature.com/scientificreports/

locations (e.g., shops, restaurants) and continuously broadcast ephemeral IDs. Individuals carry devices that 
listen to these beacons passively (i.e., without transmitting anything), store the beacons’ ephemeral IDs, and 
later compare the stored IDs against risk information that some of the beacons broadcast. These user devices 
in PanCast can be inexpensive, zero-maintenance, small electronic dongles in the form of cards or key fobs, or 
more sophisticated devices such as smartphones.

When an individual tests positive for the infectious disease, they may be legally required to or choose to 
disclose (a selected subset of) the list of ephemeral IDs stored in their user device. The individual must explicitly 
authorize the transmission of data from their device via a trusted terminal (if using a dongle), or on the device 
itself (if using a smartphone). The trusted terminal can be part of a kiosk installed in a test center, clinic, or doc-
tor’s office, or a personal device (e.g., a smartphone or a computer) owned by the user or a care provider. The 
information about which locations were contaminated at which times (which depends on users’ visits as well 
as on location features) then gets included in the broadcast risk messages. A subset of PanCast beacons act as 
network beacons, which broadcast risk information associated with times when individuals who tested positive 
were near specific beacons; smartphone users can also access this information via the Internet. A user learns 
their risk of contagion due to their presence at sites visited by diagnosed individuals, but does not learn anything 
about locations visited by other individuals, unless these individuals decide to voluntarily disclose their locations.

Figure 1 shows an overview of PanCast’s architecture; cf. "Materials and methods" and the Supplementary 
Information for more details on PanCast’s design, data collection and processing, risk dissemination, risk score 
calculation, and privacy and security properties. It is important to note that an alternative implementation of the 
system could use displayed QR codes24,25 instead of some or all of the non-network beacons. However, scanning 
a QR code requires explicit user action and unless QR codes are displayed using monitors and updated every 
few minutes, they end up being used for extended periods, which results in weaker security (see Section 4.2 of 
the Supplementary Information). Finally, PanCast’s beacons can broadcast ephemeral ids compatible with the 
Google/Apple Exposure Notification (GAEN) protocol used by most SPECTS26, allowing the beacons to seam-
lessly interoperate with deployed apps.

By design, PanCast facilitates participation of technology-challenged, economically disadvantaged, or physi-
cally challenged individuals who cannot or do not wish to use smartphones. Moreover, it ensures data minimi-
zation in accordance with existing regulations for (manual) contact tracing—a healthy individual can use the 
system in a purely passive “radio” mode, individuals who test positive control which information they disclose 
(much like in a manual contact tracing interview), and this disclosed information is accessible only to individuals 
at risk and in a privacy-preserving way. Due to this passive mode, PanCast can achieve a similar level of privacy 
as existing digital contact tracing systems in spite of using location and environmental information provided 
by the beacons to enhance risk score estimation and identify infection clusters27–30. Moreover, PanCast makes 
use of this information to achieve bidirectional interoperability with manual contact tracing: If an individual 
who tested positive uses a device, they can use the information saved in their device to better recall visited loca-
tions during a contact tracing interview, thus allowing PanCast to support manual contact tracing. Conversely, 
if a diagnosed individual did not use PanCast, a human contact tracer can manually create an entry in the risk 
database for any locations the individual recalls visiting, which may have installed beacons. By virtue of these 
properties, PanCast partially mitigates the so-called x2-adoption problem of SPECTS16: If a proportion x < 1 of 
the population has adopted a SPECTS, encounters get noticed with probability x2 ≪ 1.

To evaluate the performance of our system, we perform epidemiological simulations using an agent-based 
model31. Our results suggest that, by achieving bidirectional interoperability with manual contact tracing, the sys-
tem helps reduce the effective reproduction number even under relatively low adoption. Further, our results show 
that by utilizing environmental information to improve risk estimation and inform tracing decisions, PanCast 

Figure 1.   PanCast’s architecture. 1. Beacons and user devices are registered with the backend. 2. User devices 
record encounters with BLE beacons. 3. Diagnosed users or healthy volunteers may upload their history of 
encountered beacons to the backend via a terminal. 3b. Optionally, health workers can manually feed inputs 
from users into the backend system. 4. The backend updates the risk database with uploaded encounters. 5. Risk 
information is periodically broadcast from the backend to network beacons, which broadcast the information to 
nearby user devices.
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can achieve significantly higher specificity for the same levels of sensitivity when compared to a generic version 
of SPECTS. This can reduce the number of unnecessarily quarantined individuals, and in the case of limited 
isolation and testing capacities, it can improve epidemic risk mitigation by more efficient resource allocation. 
Moreover, our results also show that, to achieve high utility, it is sufficient to deploy beacons in a small fraction 
of strategic locations. Finally, our epidemiological simulations suggest that the above mentioned properties can 
benefit deployed SPECTS if PanCast beacons broadcast GAEN-compatible information. More specifically, the 
location information provided by PanCast can augment the information collected by SPECTS, enabling more 
accurate methods to increase precision and specificity of their notifications and enabling them to interoperate 
with manual contact tracing.

Results
We simulate the deployment of our system exemplarily in Tübingen, a town with 90,546 inhabitants in southwest 
Germany. Individuals move between their homes and 1,479 different points of interest (POIs). In the simula-
tions, we place beacons at five types of sites and identify their real locations using OpenStreetMap32: (1) schools, 
universities and research institutes; (2) restaurants, cafes and bars; (3) bus stops; (4) offices and shops; and (5) 
supermarkets and convenience stores. While for the simulations we restrict ourselves to this exemplary choice 
of site types, we appreciate that there might be other sites, e.g., health care and sports facilities, that can play a 
significant role in the spread of the disease and placing beacons at those could help further mitigate transmis-
sion. To model the exposure of individuals at the sites, we use a recently introduced agent-based and POI-based 
epidemiological model31. The model quantifies the influence that individual mobility patterns, environmental 
drivers, as well as TTI have on the rate of transmission of each infected individual.

To compare the efficacy of PanCast with generic smartphone-based, pairwise encounter-based contact trac-
ing systems (SPECTS), we simulate a range of epidemiological scenarios in which either PanCast or a generic 
SPECTS is employed over a six-month period. All experiments build on the same basic setup: starting with a 
completely susceptible population, we simulate an influx of infected individuals by randomly infecting 5 indi-
viduals per 100,000 inhabitants per week during the whole simulation period. We focus our investigation on 
the resulting number of infected individuals and the effective reproduction number Rt , which we define as the 
number of persons that an individual who becomes exposed at time t will infect on average before either recover-
ing or dying. Further we define the average effective reproduction number 〈Rt〉 of a scenario as the mean of the 
reproduction number Rt during the phase of exponential growth in the number of infected (before the onset of 
herd immunity), which is roughly until 10% of the population ceases to be susceptible. Since we are interested 
in comparing the reduction of these quantities with respect to a baseline without digital tracing, for simplicity, 
we do not deploy any additional interventional measures. In practice, to achieve epidemic control ( 〈Rt〉 < 1 ), 
one may need to deploy such additional measures, as argued elsewhere3,33,34. However, the results are strongly 
influenced by such additional measures and there are many possible implementations. Therefore, in order not 
to restrict the generality of our results, we refrain from using any additional measures, leading to scenarios in 
which despite the tracing efforts a large proportion of the population eventually gets infected. Nevertheless, 
qualitatively our findings may also apply to settings in which additional measures are in place.

Our simulations combine manual contact tracing with digital contact tracing using either PanCast or SPECTS. 
We assume a certain proportion of the population has adopted the digital tracing system. Digital tracing between 
two individuals at a site is possible whenever both persons have adopted the system and, in case of PanCast, 
additionally there is a beacon installed at the site. For manual contact tracing we assume that a proportion of 
visitors leave their contact details at certain site types. Upon receiving a positive test result, a person participates 
in a manual contract tracing interview in which they are assumed to remember a fraction of their visits to sites. 
This information can then be used to notify other individuals whose contact details are known, as well as Pan-
Cast users. Conversely, if a PanCast user is tested positive, the information stored in their dongle can be used to 
initiate manual tracing at locations where beacons are installed and contact information is manually collected.

"Materials and methods" provide further details on the epidemiological model used for the simulations as well 
as the implementation of the various tracing measures. If not stated otherwise, the results presented below are 
averages of 100 random roll-outs of the simulation, and the error bars correspond to one standard deviation. Sec-
tion 5.2.3 of the Supplementary Information provides further analyses exploring the possibility of interoperation 
between our system and SPECTS. In this context, we find that a generic SPECTS with an adoption level between 
10 and 25% already benefits from integrating PanCast beacon information from only a small proportion of POIs.

Interoperation with manual tracing can improve efficacy at low adoption levels.  To explore the 
effect of PanCast’s interaction with manual contact tracing, we combine either PanCast or SPECTS with manual 
contact tracing in a scenario where transmission rates are independent of the site type, i.e., the infection prob-
ability of a susceptible person does not depend on the place where the contact with an infected individual hap-
pened. This allows us to explore the effect of interaction with manual tracing independent of PanCast’s advan-
tage of utilizing environmental information. While SPECTS and manual contact tracing operate independently 
of each other, PanCast and manual contact tracing can benefit from each other by exchanging information (see 
"Materials and methods" for details). For all systems, tracing is initiated whenever the inferred exposure risk of 
a person exceeds the threshold of a 15 min contact with an infected individual. This is in line with the threshold 
used in current COVID-19 contact tracing systems11–17. We assume sufficient testing and isolation capacities for 
all individuals selected for tracing by a digital system or via manual contact tracing.

Figure 2 visualizes different aspects of PanCast and SPECTS in the presence of manual tracing. Figure 2a 
shows the reduction of the number of infections achieved by the tracing systems with respect to the base-
line scenario in which only manual contact tracing is employed. By mitigating the x2-adoption problem via 
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interoperation with manual tracing, we observe that PanCast generally scales more favourably with decreasing 
adoption levels. The results suggest that in the ideal scenario where beacons are placed at all sites, an adoption 
level of roughly 20% with PanCast would be sufficient to reduce the number of infections by 10% compared to 
the baseline, whereas the same result would require around 50% adoption with SPECTS. We next investigate 
how the performance of PanCast decreases when beacons are placed strategically only at a subset of the sites. To 
this end, we place the beacons at a proportion of sites with the highest integrated visit time, defined as the sum 
of individual visit durations at a given site over a period of one month. Figure 2a shows that for each proportion 
of sites with beacons, there is an adoption level up to which PanCast turns out to be more effective than SPECTS. 
With beacons at 25% of the sites (370 beacons in Tübingen) PanCast shows a clear advantage over SPECTS up 
to adoption levels of more than 50%. We observe that in order to surpass the efficacy of the SPECTS currently 
employed in Germany with an adoption level of 29%35, deploying PanCast with beacons placed strategically 
at roughly 10% (148 beacons in Tübingen) of the sites would be sufficient. Finally, equipping only roughly 5% 
of the sites with beacons would be sufficient to match the performance of SPECTS for adoption levels of up to 
25%, which is well above the adoption levels currently observed in many countries36. Figure 2b exemplarily 
shows the number of infected individuals over time at 50% adoption of digital tracing. We observe that the time 
evolution and peak numbers of infected vary across different strategies. Note that in scenarios with stronger 
outbreaks, herd immunity, defined as a sufficient number of immune individuals such that the effective reproduc-
tion number is pushed below 1 in absence of interventional measures, will be reached at an earlier time, which 
explains the relatively larger numbers of infected in the later stage of the simulation period in scenarios with 
more efficient contact tracing. Figure 2c shows the average effective reproduction number 〈Rt〉 during the phase 
of exponential growth of the number of infected which is approximately until 10% of the population ceases to 
be susceptible. We observe that in our simulation with only manual contact tracing, 〈Rt〉 is approximately 2.0 
and decreases with increasing adoption of the digital tracing technologies to a minimum of approximately 1.3. 
The average effective reproduction numbers are consistent with Fig. 2a: PanCast leads to lower values of 〈Rt〉 at 
low adoption, and for each value of the proportion of sites with beacons there is a level of adoption up to which 
PanCast seems to be favorable.

Figure 2.   Interoperation with manual contact tracing. All experiments operate manual contact tracing and 
digital tracing in parallel. In contrast to SPECTS which do not interact with manual contact tracing, PanCast 
and manual contact tracing can benefit from each other by sharing information and can thereby improve the 
efficacy of the contact tracing efforts especially at low levels of adoption. (a) The reduction of infections and (b) 
the number of infected individuals over time. In (a), the sign ∗ indicates statistically significant differences (two-
sample t-test; p value < 0.05 ) between PanCast and SPECTS. (c) The effective reproduction number averaged 
over the period of exponential growth of the number of infected. Lines and points represent averages of 100 
random roll-outs of the simulation, error bars correspond to plus and minus one standard deviation.
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Section 5.2.1 of the Supplementary Information provides further analysis of the interaction between digital 
and manual contact tracing. These include results for PanCast and SPECTS in the absence of manual tracing, 
the influence of delays in the manual tracing process, and a sensitivity analysis for the manual contact tracing 
parameters.

Utilization of environmental information improves tracing accuracy.  Environmental factors such 
as indoor versus outdoor, room size, ventilation, and air quality, have been shown to lead to vastly different 
transmission rates37–39. To evaluate the effect of using such environmental information to improve contact trac-
ing decisions, we simulate scenarios in which different site types have different transmission rates. As an exam-
ple, we assume contacts with infected individuals at social sites, i.e., restaurants, bars and cafes to be ten times 
more likely, and contacts at bus stops to be ten times less likely to lead to infection than the default. Further, 
we normalize all (scaled) transmission rates by the same empirical factor such that the overall course of the 
epidemic remains invariant under these scalings. Unlike SPECTS, PanCast has access to environmental infor-
mation and can therefore use the known variable transmission rates to estimate infection probabilities in our 
simulations. The SPECTS simulation uses an average transmission rate to calculate infection probabilities and 
make tracing decisions.

Figure 3 visualizes the results of several different experiments in this general setting. Figure 3a shows the 
effect of utilizing environmental information for contact tracing on the course of the epidemic relative to the 
no contact tracing baseline. We assume that at any given time we allow a maximum of 10% of the population 
to be quarantined based on tracing decisions, in addition to positively tested individuals and their household 
members. Under this fixed budget, PanCast and SPECTS have to allocate tests and quarantine measures based 
on their respective assessment of infection probabilities. To isolate the effect of environmental information from 
PanCast’s interaction with manual contact tracing, we first employ both tracing systems in the absence of manual 
contact tracing (left panel). We observe that while SPECTS seems to provide a slightly stronger reduction in 
the number of infected at 10% adoption, PanCast with beacons at only 10% of sites achieves a larger reduction 
for higher adoption values. Furthermore, we see that 5% of sites with beacons seems to be sufficient to exceed 
SPECTS performance at 50% adoption. For adoption levels above 25%, equipping only 10% of the sites with 
beacons does not seem to negatively affect PanCast’s performance compared to placing beacons at all sites. The 
right panel of Fig. 3a shows the results of the same experiments in the presence of manual contact tracing. We 
observe that by leveraging manual contact tracing information, both PanCast and SPECTS achieve higher levels 
of reduction of the number of infected compared to the results achieved without manual tracing, especially at low 
adoption levels. Moreover, the results suggest that PanCast’s advantage over SPECTS increases via its interaction 
with manual contact tracing, for proportions of sites with beacons at 10% and above. Section 5.2.2 of the Sup-
plementary Information provides further analysis concerning the utilization of environmental information. We 
find that the relative advantage of PanCast is consistent across alternative isolation capacities.

Figure 3b compares PanCast’s and SPECTS receiver operating characteristic (ROC) curves computed by 
varying the tracing threshold, i.e., the infection probability above which contacts are selected for tracing, from 
0 to 1. We observe that for every fixed sensitivity (true positive rate) PanCast achieves a larger specificity (i.e., 
smaller false positive rate), implying that PanCast can detect the same proportion of infected individuals as 
SPECTS while imposing a smaller burden on the population in terms of a smaller number of unnecessarily 
quarantined individuals.

Figure 3c shows the sensitivity and specificity of the two tracing systems against the tracing threshold for 
different site types. We see that on average PanCast provides larger sensitivity and approximately equal specific-
ity compared to SPECTS for every value of the threshold. Further, we observe that SPECTS overestimate the 
infection probability at education, office and supermarket sites while underestimating it at social sites, which 
explains the larger false positive rate for a given true positive rate as compared to PanCast. Notice that, result-
ing from our rescaling of the site-dependent transmission rates, bus stops and to a lesser degree supermarkets 
become (almost) irrelevant for the epidemiological development, as transmission rates are low and contact 
times between individuals typically short. As the number of infections at these sites tends to zero, specificity and 
sensitivity are not well defined anymore.

Figure 3d visualizes the efficacy of the contact tracing systems in a different setting, where system adoption is 
taken into account. More specifically, while sensitivity and specificity are initially only defined over the group of 
individuals who participated in the study, i.e., only contacts for whom the tracing system could make an active 
decision for or against tracing, we define the effective, also called clinical40, sensitivity and specificity as taking into 
account all individuals in the simulation. For all individuals that could not be traced due to either the infector 
or the potentially infected individual not participating in contact tracing, we assume a negative tracing decision. 
We study the effective quantities in the presence of manual contact tracing, thereby combining the aspects of 
both interoperation with manual tracing and utilization of environmental information. We observe that PanCast 
generally outperforms SPECTS if adoption is low or the percentage of sites with beacons is high. If neither is the 
case, then PanCast still has higher sensitivity up to certain values of the false positive rate (i.e., 1− specificity ), 
above which the situation is reversed. Finally, in real-world application, the relative advantage of PanCast may 
further increase as more fine-grained and accurate information characterizing the infection risks of sites becomes 
available, allowing the use of data-driven infection risk estimates41. While such knowledge is presently scarce, a 
system such as PanCast would allow us to gather it.

Strategic placement of beacons allows for high utility at low cost.  In the previous experiments, 
we have placed beacons strategically at sites where exposures are most likely to happen. Figure 4 compares this 
to a random placement strategy within the scenario of site-independent transmission rates (i.e., the scenario 
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of Fig. 2). The results in Fig. 4a show that a random placement would require equipping a large proportion of 
roughly 50% of the sites with beacons to achieve at least 10% reduction in the number of infections for low and 
intermediate adoption levels. This disadvantage is mitigated by placing beacons at the sites with the highest 
integrated visit times. In the latter case, we observe that even for proportions of sites with beacons below 25% 
(i.e., 370 beacons in our Tübingen example) PanCast is capable of reducing infections by at least 10% for low and 
intermediate adoption levels. Figure 4b, c show the distribution of beacons for the two strategies. We observe 
that the random strategy places many beacons at offices and workplaces (red) while the other strategy places bea-
cons predominantly at social (yellow) and education sites (blue). Note that these results depend on the mobility 
model, and with another model, different sites or site types could be prioritized. Finally, note that these estimates 

Figure 3.   Leveraging site information to improve tracing decisions. We assume that PanCast has access 
to the site-dependent transmission rates, while SPECTS can only use an average value to inform tracing 
decisions. (a) The reduction of infections achieved by PanCast and SPECTS with and without manual tracing 
under the constraint that at any given time a maximum of 10% of the population can be quarantined due to 
tracing decisions (in addition to positively tested individuals and their household members). In both figures, 
points represent averages of 400 random roll-outs of the simulation, error bars correspond to plus and minus 
one standard deviation, and the sign ∗ indicates a statistically significant difference (two-sample t-test; p 
value < 0.05 ) between PanCast and SPECTS. (b) ROC curves defined as true positive rate (sensitivity) against 
false positive rate ( 1− specificity ). (c)  Sensitivity and specificity stratified by site type. (d) Effective sensitivity 
and specificity (see text) for different adoption levels, incorporating both interaction with manual contact 
tracing and utilization of environmental information. PanCast outperforms SPECTS if adoption is low or the 
percentage of sites with beacons is high.
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are conservative as we ranked the sites only according to integrated visit time and did not account for differences 
in site-specific transmission rates. Any features known to affect infection risk (e.g., indoor vs. outdoor) could be 
used to further improve beacon placement.

Discussion
While manual contact tracing has played an important role in epidemic mitigation strategies19,42, digital tracing 
solutions have not been able to prove their efficacy in countries that do not mandate their use, partly due to 
low adoption levels20,21,43. As shown by the simulations, bidirectional integration of digital and manual tracing 
has the potential to yield benefits for epidemic mitigation at relatively low adoption levels. Further, our results 
suggest that the utilization of environmental information for risk assessment can significantly improve the 
efficacy of contact tracing decisions and thereby contribute to effective mitigation. While existing SPECTS can 
neither effectively interact with manual tracing nor take into account environmental information, this limita-
tion could be relaxed if PanCast’s beacons implemented SPECTS protocols, and the information provided by 
SPECTS is combined with the information provided by the beacons. This applies both for centralized SPECTS 
such as PEPP-NTK11 and decentralized ones such as DP3T15. By doing so, PanCast could add relevant location-
dependent information to SPECTS, enabling them to interoperate with manual contact tracing and increasing 
the accuracy of their notifications. In this context, note that in principle, interoperation with manual contact 
tracing would be possible to a certain degree with SPECTS if users who get notified via manual contact tracing 
were able to pass on this information to their devices. However, in this case only shared contacts between the 
infectious individual and the SPECTS user, i.e., individuals who visited the same site at the same time as both, 
could be notified of their risk. In contrast, PanCast’s location information allows notification of all contacts that 
use the system. In addition, any information obtained during manual contact tracing of individuals who tested 
positive could be used to populate the PanCast risk database. One could further implement proactive contact 
tracing41,44 on PanCast, i.e., not only trace the contacts of positively tested individuals but also the contacts of 
their contacts, which has been shown to have the potential for increasing the accuracy of tracing decisions41,44.

In addition to aspects concerning the interoperability with other systems, effective digital tracing should be 
able to both leverage and help acquire circumstantial information that influences exposure. It has recently been 
shown that environmental factors such as indoor vs. outdoor spaces, room size, and ventilation strongly influence 

Figure 4.   Beacon placement strategies. (a)  Reduction of the number of infections under random and 
strategic allocation of beacons respectively over the proportion of beacons and the adoption level of PanCast 
(results averaged over 100 simulations). (b,c)  Spatial distribution of beacons at 25% of the sites across our 
example city, Tübingen. Colored circles mark sites equipped with beacons and grey circles represent sites 
without beacons. The site types in our model are shops and workplaces (red), cafes, bars and restaurants 
(orange), schools and universities (blue), grocery stores (purple) and public transport stops (green). The maps 
are generated with OpenStreetMap32 ( © OpenStreetMap contributors).
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individual risk of contagion45. By placing beacons in known locations, PanCast can account for these environ-
mental factors to achieve more accurate estimates of individual risks of infection, as shown in our epidemiologi-
cal simulations. If required, one may estimate some factors such as distance more precisely using triangulation 
among multiple beacons per location46. Moreover, while SPECTS are limited to contemporaneous encounters 
where individuals occupy a space at the same time, PanCast can capture non-contemporaneous transmissions, 
which may occur shortly after an infectious individual has left a small and poorly ventilated room. While our 
simulations do not explicitly show this advantage due to a lack of reliable estimates for the true infection risk as 
a function of space-time distance, there are reasons to believe that non-contemporaneous infections contribute 
to the course of the pandemic47. A deployment of PanCast would allow for gathering the data needed to estimate 
these or other disease parameters, which could subsequently be used to evaluate the system and assist research. 
This also concerns the overdispersion of infections observed for COVID-19—many infected individuals do not 
infect anyone, while few superspreaders infect many27–30. Therefore, while a diagnosed patient is unlikely to be 
a superspreader themselves, they are likely to have been infected by a superspreader who has probably infected 
others as well. If digital contact tracing can identify infection events spatially, one may be able to trace entire 
clusters using such backward contact tracing44,48.

While PanCast exhibited favorable results in the simulations, the conclusions we draw have to be considered 
in the context of the epidemiological model employed, similarly as in previous work assessing the effective-
ness of SPECTS4,44,49. In this context, it is worth noting that, in our simulations, we did not consider additional 
interventional measures. As a result, a large proportion of the population becomes infected and the epidemic is 
eventually ended by a combination of contact tracing and herd immunity. However, our findings suggest that, 
as PanCast can lead to a stronger reduction of the reproduction number, it may be possible to achieve epidemic 
control (〈Rt〉 < 1) under less stringent interventional measures than with SPECTS. Moreover, while we have used 
a suitable modeling framework, explicitly representing the sites at which transmissions occur, the simulations of 
both SPECTS and PanCast do not take into account practical considerations such as battery status or imperfect 
beacon coverage within a specific site. The simulations moreover assume that risk dissemination is instantane-
ous. This assumption holds for users carrying smartphones, which can frequently query and download new 
risk information via the Internet. For users carrying dongles, the assumption is reasonable if such individuals’ 
movement is mostly local, which is a good approximation especially while individuals’ movement is constrained 
by government interventions50. It would be unrealistic if individuals frequently traveled to distant sites, in which 
case network beacons around the world would have to broadcast comprehensive non-local risk information 
which takes more time. However, our detailed protocol for risk dissemination (Section 2 in the Supplementary 
Information) ensures that even if individuals travel to far away sites, the time it takes for dongles to receive risk 
information stays within acceptable limits.

Ultimately, digital tracing can only be effective if it can be easily deployed, is widely accessible and available at 
low cost, and does not suffer from delays. While PanCast can be implemented using smartphones as user devices, 
the use of dongles as user devices also allows individuals who, for financial or personal reasons, cannot or do not 
want to use smartphone apps to participate in and benefit from digital contact tracing. As these individuals might 
be overrepresented among the elderly and socio-economically disadvantaged, PanCast specifically allows for the 
inclusion of groups that may be particularly vulnerable to pandemics51. A broad installation of PanCast would 
require the distribution of dongles to (at least) individuals without smartphones, as well as equipping a significant 
amount of sites with beacons. In this context, note that in recent years bluetooth beacons have become increas-
ingly popular for a number of purposes, among others for proximity marketing, indoor navigation and IoT and 
Smart City applications52–54. Our system blends in well with this development as it relies on a technology whose 
practical feasibility has been proven in the context of the before-mentioned applications. Moreover, beacons 
already installed for other purposes could be equipped with PanCast’s software and thus implement the system 
at zero cost. In addition, the system could also be effectively employed in an incremental and/or local fashion at 
low costs. Individual institutions such as schools or companies could employ the system on their premises to trace 
and control the epidemic spread among their members. Likewise, the system could be deployed temporarily to 
allow large cultural events to take place while ensuring the possibility to do backward contact tracing. Such local 
deployment would already provide valuable information on location-dependent transmission parameters. In 
addition, it would allow tracking these parameters over time as a virus may change its characteristics in response 
to the evolutionary pressure generated by containment measures. This has the potential to contribute to a more 
fine-grained, data-driven understanding of pandemics, which is an important aspect to inform and legally justify 
interventional policies adopted by governments.

Materials and methods
In the following, we provide some technical details of the proposed system’s components and functionality as 
well as the epidemiological model used in the simulations. The section system components can be skipped on 
first reading. More detailed information can be found in the Supplementary Information.

System components.  Overview.  Figure 5 shows an overview of PanCast’s architecture. PanCast com-
prises two types of Bluetooth Low Energy beacons (BLE-only and BLE+network), user devices (dongles or 
smartphones), terminals, and a backend platform that relays risk notifications and aggregates data for epidemio-
logical analysis. In the rest of this section, we mainly focus on dongles for user devices. All beacons and dongles 
are registered and authenticated with the backend, receive a secret key from the backend at the time of registra-
tion, and have a coarse-grained timer and a small amount of flash storage. When a user receives a dongle, they 
receive a list of one-time passwords (OTPs) that are also stored in the dongle. A diagnosed user can use these 
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OTPs to authenticate to the dongle and to control the upload of data. Below, we elaborate on the components of 
the system and their respective functionalities.

Beacons.  PanCast employs two types of beacons: BLE beacons are commodity, battery-operated BLE-only bea-
cons and require no network connection to the backend. Network beacons also use BLE, but additionally require 
mains power and a network connection to provide connectivity to backend servers. The beacons serve two 
purposes: 

(1)	 Every beacon provides a localization point in a specific place (e.g., an office, a bar, a public bus). A beacon 
periodically broadcasts an ephemeral id, its device id, and a location id. The device id and the location id 
are cryptographically signed by the backend, while the ephemeral id is generated by the beacon by hashing 
a beacon-specific secret key, its location id, and an epoch number derived from its local clock. Because 
the hash includes the epoch number, a fresh ephemeral id is broadcast in every epoch. This localizes every 
encounter between the beacon and a dongle to a specific epoch. The epoch length is set upfront to a small 
value, e.g., 15 min.

(2)	 Network beacons additionally broadcast global risk information received from the backend periodically, 
using a protocol that balances privacy and efficiency.

Beacons are installed in specific locations, for instance, under the guidance of health authorities or by organiza-
tions that choose to place them on their premises. Stationary beacons broadcast a GPS coordinate or a named 
identifier (e.g., city, zip code). Beacons may also be installed in mobile locations such as trains or buses; in this 
case they broadcast ids that identify their trajectories. All beacons are registered with the backend using their 
id and their location id comprising their stationary coordinate or trajectory, as well as information about their 
location that may be epidemiologically relevant (e.g., indoor, outdoor, ventilation, air quality, ambient noise level). 
This information can be used by the backend when computing infection risks or performing epidemiological 
analyses. Simple, battery-operated BLE beacons can account for the majority of beacons. These can be cheap and 
easy to install, because they do not require mains power or network connectivity. We expect them to be installed 
wherever infection transmission is likely to occur (e.g., in places where people congregate). A smaller number of 
network beacons provide nearby dongles with risk information. To reduce installation costs, we expect them to 
be installed where power and network connectivity is already available, e.g., next to WiFi base stations.

Figure 5.   PanCast’s hardware devices, installation and collection, testing and uploading, and risk notification.
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Dongles.  Dongles are small, simple devices that users can attach to a keyring, or wear on the wrist or around 
the neck. They operate off a coin battery and have a minimal user interface in the form of a LED that indicates 
risk status and battery condition, and a button to control the LED notification. Dongles continuously listen for 
BLE transmissions from nearby beacons. They receive ephemeral ids from both types of beacons and store them 
along with the timestamps. When in proximity of a network beacon, they additionally receive risk information, 
compare that information with the device’s stored history of ephemeral ids received from beacons, and alert the 
user in case they were in spatio-temporal proximity of a diagnosed individual under circumstances that suggest 
a possible transmission. Dongles usually operate entirely passively. They only transmit information when a user 
chooses to anonymously reveal their information via a user terminal.

Backend service.  The backend maintains several databases. First, it maintains a database of registered beacons, 
their locations/trajectories, and the secret key used by each beacon to generate the unique sequence of ephem-
eral ids it broadcasts. A second database contains registered users, their dongles, and the cryptographic keys 
required to authenticate each dongle. A third database, called the risk database, contains the uploaded encounter 
histories of individuals who recently tested positive. Finally, a fourth database, called the epidemiology database, 
contains the encounter histories of healthy users who chose to contribute their data for epidemic analytics. 
The encounter database is available to health authorities for analytics, e.g., to identify hotspots, superspreading 
events, and to estimate epidemiological parameters. The backend uses this database to transmit risk information 
to network beacons, which then broadcast it to nearby user dongles.

User terminals.  User terminals are provided at locations that issue dongles as well as health care facilities that 
do testing. Terminals allow users to connect to their dongles over BLE to change their privacy settings, inspect 
what data is recorded on their dongles, upload data to the backend and, when allowed or required by law, decide 
what subset of the recorded information they wish to upload when they are tested positive. Users can also use 
personal computers or smartphones as terminals to perform these tasks in the comfort of their home or use the 
smartphone of a care provider who visits their home.

System functionality.  Data upload and risk dissemination.  Positively tested individuals may share data 
about their encounters within the period of contagion of the disease (e.g., 14 days in the case of COVID-19) 
with health authorities to enable dissemination of risk information. Upon receiving a positive test result, users 
obtain a certificate with which they can verify their infectious state when uploading the information stored in 
their dongles to the backend via a terminal. Once the backend receives a user’s encryption key derived from one 
of the user’s OTPs, it decrypts their dongle’s encounter entries and verifies their consistency. If the entries are 
consistent, the backend adds the encounter entries to the risk database and/or the epidemiology database. The 
global risk information is broadcast to the users’ dongles via network beacons. Dongles use this information 
to compute a risk score based on the number of matched ephemeral ids and other features of each encounter 
encoded in the beacon broadcast. If the risk exceeds a certain threshold, the dongle notifies the user via a LED 
so they can self-isolate and get tested. For the case that users carry their dongles openly visible in public spaces, 
the LED can be temporarily deactivated in order not to accidentally reveal a potentially incoming risk notifica-
tion to third parties. Refer to Supplementary Information Sections 1.4 and 2 for details on data upload and risk 
dissemination respectively.

Risk score calculation.  Whenever a user dongle receives risk information from the backend, it updates the 
owner’s risk score locally (within the dongle). The individual risk score is proportional to the period during 
which the individual and diagnosed individuals were near the same beacons, as measured by the number of 
ephemeral ids contained in the risk information matching those stored in the dongle. Each ephemeral id may be 
weighted differently according to beacon-dependent parameters, such as indoor/outdoor, air quality, ventilation, 
and ambient noise. These parameters were stored by the dongle when it received the beacon’s transmission. How 
these features are weighted depends on parameters provided by the backend as part of the risk information. The 
parameters can be determined by the backend using machine learning techniques31 and reflect the latest scien-
tific knowledge about the disease.

Security and Privacy.  PanCast’s security properties are comparable to or improve upon that of SPECTS55,56. 
Its user devices transmit no information in normal operation and its dongles have a smaller attack surface than 
smartphones. While PanCast indirectly provides information about the locations where encounters occurred via 
the known beacon locations, this information is revealed selectively and only when users explicitly choose to do 
so (e.g., after the owner is tested positive). When an individual is diagnosed, they explicitly consent to the trans-
mission and can select the information they wish to transmit from their device to the health authority. Even the 
most privacy-conscious users who disclose nothing and never transmit anything from their dongles (i.e., only 
listen passively) receive risk notifications arising from space-time proximity to diagnosed users who choose to 
disclose information. Moreover, a user learns about potential risks in a visited location only when a diagnosed 
individual visited the location within a certain time window, but does not otherwise learn the location history 
of positively tested individuals. Finally, the risk broadcast provides strong differential privacy guarantees for the 
number of risk entries and the number of diagnosed individuals contained in a risk broadcast. This ensures that 
an adversary, even one in possession of offline information about some users, learns nothing about the health 
status or whereabouts of the remaining users through the system. We provide a detailed discussion of PanCast’s 
security and privacy characteristics in Section 3 of the Supplementary Information.
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Epidemiological simulations.  Epidemiological model.  To study and contrast the effects of PanCast in 
the context of generic SPECTS, we simulate various contact tracing policies using a spatiotemporal epidemic 
model recently introduced by Lorch et al.31. This agent-based model leverages POIs from OpenStreetMap32 and 
population density data from Facebook57 as well as information about household structure and age demograph-
ics to build a mobility model of a given region—here of Tübingen, Germany. Following the gravity model58 as 
well as additional assumptions about the individual mobility behavior, the model simulates the mobility traces of 
individuals in the region. In particular, the model assumes that the probability of an individual visiting a specific 
site decreases with the distance between their household and the site. Refer to31 for a detailed overview of the 
relevant parameters.

By modeling transmissions of the disease explicitly at the sites they occur, the model is directly applicable 
to simulating the effects of our proposed system and comparing it with existing SPECTS. The disease dynamics 
follow an extended SEIR compartmental model59 and are similar to other SEIR variants used in the context of 
COVID-1949,60. Specifically, each individual is defined to be in one of several epidemiological states (e.g., suscep-
tible, symptomatic, or resistant) at any given point in time. Transitions from the susceptible to an infected state 
happens by interaction with infectious individuals at sites and in households. Section 5.1 in the Supplementary 
Information and Supplementary Figure 1 provide further details on the baseline disease dynamics of the model. 
Its underlying temporal point process framework explicitly represents events when individuals check in at POIs, 
get in contact with and infect each other, change epidemiological state, and are affected by or interact with TTI 
measures61. The model further captures non-contemporaneous infections, allows for variability in transmission 
rate at different POI types, and faithfully incorporates contact tracing measures at POIs, such as manual contact 
tracing.

Model parameters.  Site and household transmission rates are estimated using Bayesian optimization as pro-
posed by Lorch et al.31. Following previous studies, we set the proportion of asymptomatic individuals among 
all infected individuals in the population to 0.449,62,63 and the relative asymptomatic transmission rate to 0.5560. 
After an infectious individual leaves a site, we assume that their relative non-contemporaneous transmission rate 
to others decays with a half-life ten times shorter than estimated for aerosols under laboratory conditions47. We 
truncate the possibility of non-contemporaneous transmission when the relative transmission rate drops below 
10%, which occurs 21 minutes after an individual leaves a site. The remaining disease parameters related to SEIR 
progression from having been exposed to recovery are taken from the literature64–69 and follow the values stated 
in31.

Contact tracing.  Our simulations include manual contact tracing as well as digital contact tracing using either 
PanCast or SPECTS. Independent of the tracing method, whenever a contact of a diagnosed individual gets suc-
cessfully traced, the infection risk is estimated by taking into account the duration of the contact and possibly 
environmental factors (only for PanCast). Individuals with infection risk above a certain threshold are quaran-
tined for two weeks, get tested within the next 24 hours, and receive the outcome of the test 48 hours later. We 
choose the infection risk threshold to correspond to a 15 minute contact with a symptomatic individual in the 
model, which is in accordance with SPECTS currently employed in Germany, Switzerland, the United Kingdom, 
France, and Australia35,70–73.

All simulations using PanCast or SPECTS also implement manual tracing by assuming that a proportion 
preachable = 0.5 of visitors leave their contact details at social, office and education sites, so that they can be reliably 
contacted, e.g., via phone. Upon receiving a positive test result, we assume that every individual participates in a 
manual contact tracing interview independent of their participation in digital tracing. In the tracing interview, 
we assume a person only remembers a fraction precall = 0.1 of their visit history of the past 14 days. This accounts 
for the fact that most people cannot remember every place they have visited and some people might not be will-
ing to share any data or cannot be reached for an interview. This choice of the parameter values is conservative 
because PanCast directly benefits from larger values of precall and preachable via interoperation with manual tracing 
as opposed to SPECTS. If an infected person i recalls a visit at which they encountered a person j and individual 
j is reachable, the contact between i and j is traced successfully and j gets quarantined and tested if the exposure 
risk exceeds the previously stated 15 minute threshold. Here, we assume that individuals remember the time and 
duration of their visits at a 15 minute granularity, the one used by PanCast.

For SPECTS, we assume that a certain proportion pdigital of the population adopts the digital tracing technol-
ogy. When an individual using SPECTS is tested positive, all contacts at POIs of the past 14 days that also use the 
system get traced. SPECTS and manual tracing do not interoperate but complement each other. Any person may 
still participate in manual contact tracing, but no contact information can be shared between the two systems 
as SPECTS do not operate using space-time information.

For PanCast, we likewise assume that the same proportion pdigital of the population has adopted the system 
and is carrying a user device (dongle or smartphone). We place beacons at a proportion pbeacon of POIs. This 
can be done at random or strategically, by taking into account quantities related to the site-specific probability 
of infection, e.g., by ranking the sites according to their integrated visit time. Whenever a person carrying a user 
device gets tested positive, all contacts that also carry user devices at sites with beacons get traced. In addition, the 
information can be used to trigger manual tracing actions at all sites registered by the device of the positive-tested 
individual (i.e., PanCast supports manual tracing). Likewise, when a person that tested positive does not carry a 
PanCast user device but participates in a manual contact interview and recalls a visit to a site with a beacon, all 
individuals carrying dongles at this site can be traced (i.e., manual tracing supports PanCast).

In our simulations, both for manual and digital contact tracing, we assume that the traced contacts are noti-
fied and quarantined instantaneously. Moreover, for manual contact tracing, we assume that a contact tracing 
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interview takes place instantaneously upon receiving a positive test result. In practice, these assumptions may be 
violated and influence the effectiveness of both manual and digital contact tracing4. In Section 5.2.1 of the Sup-
plementary Information we show that a 24-hour delay of the manual tracing notifications does not qualitatively 
change our findings (Supplementary Figure 4).

Data availability.  Code and data to reproduce our epidemiological simulations are available at https://​
github.​com/​covid​19-​model/​simul​ator/​tree/​beacon. Our simulation model is based on location data from 
OpenStreetMap32 and population density data from Facebook Data for Good57. We declare that all use of data 
is in accordance with the respective rules and no individual human data has been used. The plots and visualiza-
tions in this paper have been created with matplotlib, Apple Keynote, Omnigraffle74 and OpenStreetMap32.
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